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We consider the motion of a heavy solid with internal cyclical motions in a heavy ideal 
fluid of infinite extent under the conditions that the weight of the body and the Archi- 

medean buoyant force form a couple, and that the impulsive force is vertical (the Chap- 
lygin condition [l]). 

Three new special cases in which the equations of motion of the above mechanical 
system are integrable [l - 51 are considered. The equations in these cases admit of a 
system of three linear particular solutions. It is shown that all of these particular solu- 
tions are expressible in terms of elliptic functions of time, and that the rotational portion 
of the motions of the solid in the fluid described by these particular solutions is similar 

to the motion of a balanced gyrostat [6]. 
Algebraic solutions containing two arbitrary constants are given by Clebsch’s second 

and third cases of integrability of the Kirchhoff-Clebsch equations f2 and 31 of the clas- 
sical problem of internal motion of a solid bounded by a simply connected surface through 
an ideal fluid of infinite extent in all directions. These algebraic solutions immediately 

yield the “complete set” of four first integrals required for reduction of the problem to 
quadratures. 

Liapunov l’7] noted that Clebsch’s third case of integrability could be considered as a 

certain limiting case of his second case. The fourth first integrals for these Clebsch cases 
are represented in a single form. 

The fourth integrals in the classical cases of Steklov and Liapunov were reduced to a 
single form by Kolosov [8] and Kharlamov [9 and lo]. 

1. We consider the problem of motion in an unbounded ideal homogeneous imcom- 
pressible fluid of a heavy solid bounded by a simply connected surface with multiply con- 
nected cavities filled completely with an ideal fluid engaged in nonvertical motion. 
The Chaplygin conditions [l] apply, i.e. the weight of the body and the fluid in its cavi- 
ties and the Archimedean buoyant force form a couple. We assume that the motion of 
the boundless fluid due to the motion of the solid in it is nonvertical and that the fluid 

is at rest at infinity. 
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To within a constant determined by the cyclical motion of the liquid filling the cavi- 
ties of the solid, thz ,kptic energy T of such a system is given by 

7+x 2 ( ar$W + WW + 2+W~), ari = ajh bij = bj, 
i==l j-1 

where ail, b,i, ctj’are constants specific to the given system, and where Rx, RI, R8 and 
PI, Pa, Pa are the projections of the impulsive force R and of the impulsive couple P 

of the system (without allowance for the cyclical motion of the fluid in the cavities of 
the solid) on the axes of the rectangular coordinate system ozlq+s rigidly connected to 
the solid. 

Denoting the projections of the translatiwl and instantaneous angular velocities of 
the solid on the moving axes by CI,, Us, Us and ~1, @sol, (0s. we obtain the following 
expressions for these projections 133: 

ilT aT 
h=:w @==iq- 1 0 - 1,9,8) 

Assuming that the impulsive force is directed along the line of action of the gravita- 
tional force, we can write the following equations of motion of the heavy solid in a fluid 
under the Chaplygin conditions [l - 51: 

dR1 
~+wb-abRr=o (=+) 

~+,(~,+BI)--cP~(R+~*~+UJ(~-LIJ~~=~,R,-~~, (123) (1.1) 

Here g = (gl, gr, ga) is the vector of the kinetic moment with respect to the origin 
of the moving axes of the cyclical motion of the liquid in the cavities of the solid ; 
r= @I, n, ra) is a vector proportional to the radius vector constructed from the centroid 

of the volume bounded by the surface of the body immersed in the unbounded fluid to 
the center of mass of the solid and the liquid filling its cavities. 

As was’shown by Zhukovskii [6], the liquid circulating in the cavities of the body can 
be replaced by rotating flywheels with steady relative motions, and that this can be done 

without altering the equations of motion of the system under consideration. Similar 

equations describe the inertial motion in an unbounded fluid of a solid bounded by a 
multiply connected surface (Kharlamov [S]). 

Eqs. (1.1) have the three first integrals p - 51 

T - rrRr - rd7a - r8R3 = cons& RI’ $ R.1 + Rsa = const (1.2) 
(PI f gJR1 + (Pr + gr) RI + (Pa + 18) Ra = const 

2. Let us consider the special cases of integrability of Eqs. (1.1) in which the latter 
have a system of three linear particular solutions. 

i (QljPj f PijRj) = at (i = 4, 2, 3), ali, plj, 8, = con& (2.1) 
J-1 

With suitably chosen coordinate axes, system of solutions (2.1) can be written as ~11 

Pt + kiR< = ai (1 = i, a. 3) (2.2) 
where the constants k, and 84 must be determined. 

Kharlamov [lo] obtained the following conditions of existence of system of solutions 
(2.2) of Eqs. (1.1) : (2.3) 

618 - cl& * hl - u+) (h - $) = 0, hg - talks* ha - ada) (h - h) = 0 (123) 

bu - ha + (cm - CII) 4 -I- (cm - cm) kr + da (ka - k,) z 0 (123) (2.4) 
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@I131 + @lPh + al& = % (8, -I- g1) (W (2.5) 

(an - hllkr) (81 + al) - (Cl3 - Rnh) (31 -I- ga) = 0 (123) (2.6) 

h + % (h - h) (a + g1) + (cza - aa&) (31 + g1) - (Cl1 - anh) (a + gz) = Cll3l + 

+cz13a + cs1.G (123) (2.7) 

rl - %@a - i) (9 + A + (cm - aa3ks) (31 + gJ - (cl3 - a13k3) (~3 + gs) = cllsl + 

Here x is some parameter. 
+ cn1.Q + Cal33 ww 

Relations (2.3) - (2.7) are the conditions of mechanical realizability of these motions 
of the solid in the fluid. If these conditions are satisfied by some real values of the con- 
stants ki, sf (I = 1,2,3), the motions in question are possible ; if they cannot be SO satis- 
fied, the motions are impossible. 

From now on we shall confine ourselves to the case where 

(k, - kz) (b - ks) (ks - 4) # 0 (2.6) 
Conditions (2.3) then yield the relations 

cu = an&a, cur = a&, brs = &cika (123) (2.9) 

This ensures satisfaction of conditions (2.6). and the expression for the double kinetic 
energy of the system becomes (2.10) 

2T -x hP? -l- 2uPlPa i- 2c11PIRI + 2alr (k&P, + hR&),+ b,,Rla i- 2al~klk&Ral 

H?z’and below the summation symbol with the index (123) means that the terms not 
written out are to be obtained from the given terms by cyclic permutation of their sub- 
scripts 1, 2 and 3. 

Further, solving Eqs. (2.5) for ai, ss and as, we obtain 

s, = xA-1 {[(aoa - xl (4i3 - 4 - aa g, + [h&l - a1z(a33 - x)lga + 

+ I~ll~3.3 - Q31ha - x)lgs) ww (2.11) 
A = (an - %I (a - xl (ass- %) - n233 (a11 - x) - a3l'(a,* -%) - Ul,'(lqq - x) 

3. Let 
Cl1 = cm = c&q = c (3.1) 

Eqs. (8.4) then yield the conditions bn _ bss 
-+ 

b, _ bll 
-+ 

b,, - baa 
011 a23 

-=o 
a33 

(am - ~3) Ms+(w- ~n)hh+(a~l- ass) klka =o 

which give us the following equations : 

b,, = b + ~~~a~as, kak.g = (I + TUll (13) (3.2) 

where b, t and u are arbitrary parameters. The second group of relations (3.2) yields 

Eqs. 
(3.3) 

Subtracting and adding Eqs. (2.7) term by term and taking into account relations 
(2.8),(2.9),(3.1) and (3.2). we obtain x =-G/2r 

1 
rl = s [2klkzkn - a (kl + kz + kdl (II+ a) - ; klk2k9sl + + kg1 - cgl (123) (3.4) 

Thus, if the double kinetic energy of the system is given by Formula (2. lo), if Eqs. 
(3.1) - (3.3) hold, and if the quantities rr, TZ and r3 are given by Formulas (3.4), then 

Eqs. (1.1) of the motion of such a solid in a fluid admit of system of linear particular 
solutions (2.2) in which the constants s lr sz and sa are given by Formulas (2.11) for 
x = - U / 2t; the problem then reduces to elliptic functions of time (see Section 6). 

Specifically, the Steklov case [12] applies for ~1% I= um = aa = 0, g, = g, = gl = 0, 
r, = rl = ra = 0 . 
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4. If along with conditions (3.1) we have 

6,, * ass = 0~ = a 
then EqsJ2.4) yield the condition 

(6w - 4s) k&8 -f- (42 - atdhki + (41 - b) klk2 = 0 

sothat 

(4.1) 

Substituting these equations into (2.4), we arrive at the condition OT = - 1, so that 

akzks = (I - 4, wa (4.2) 
From this we readily obtain 

VW-WW-W 
k1 =a )/a(@-brr) 

(a=zti) (123) (4.3) 

Eqs. (2. ‘7) with allowance for (2.8), (2.9), (3. l), (4.1) and (4.2) yield Eq. x = r/,e 
and the following expressions for the quantities rl, rr and rs: 

2rt = e (I&- ks - ks) (sr + gr) + (c - ekt) g, (W (4.4) 

Thus, if the double kinetic energy of the system is given by Formula (2. lo), if Eqs. 
(3.1),(4.1) and (4,3),hold, and if the quantities r 1, r2 and rs are given by Formulas(4.4), 

then Eqs. (1.1) of the motion of the solid in a fluid have system of linear particular solu- 
tions (2.2) in which the constants or, s2 and ss .are given by Formulas (2.11) for x = r/ra; 
The problem then reduces to elliptic functions of time. 

6. It is easy to verify the following statement. If the double kinetic energy of the 
system is given by (2. lo), if 

@I1 ‘-On =fr@J=o, &rs=fJ@=~~=&, 4+za+6as-2cilr) (1W 

and if the quantities rl, r8, ra are given by the expressions 

3rl = (~2s + cs~ - 2a) sl - (CII + c2a + a31 61 1123) 

where the constants sl, se and sa are given by Formulas (2.11) for .x = a / 4., then Eqs. 
(1.1) of the motion of such a solid in a fluid have system of linear particular solutions 
(2.2), and the problem reduces to elliptic functions of time. 

Specifically. for 01s = 0s.a = ast = 0, g, = gs = ga = Oiand r, = r, = rs = Olwe have 

the integraale case established by Steklov [12]. 

8. Let us show that the special cases of integrability of Eqs. (1.1) cited in Sections 

3 - 5 are reducible to elliptic functions of time and that the rotational portion of the 
motions of the heavy solid in a fluid described by these particular solutions is similar to 
the motion of a balanced gyrostat. 

In fact, the double kinetic energy of the system is of the form (2.10) for all these par- 
ticular solutions, and the constants, 4, k* and ks are related to Q, bt, and tic by relations 

(2.4). Computing the components of the instantaneous angular velocity of the solid and 
making use of solutions (2.2) and relations (2.5), we obtain 

This gives us 
0s = (crt-e&)& + x fa + gi) WB) 

RI= 
Q)l x 91 + ad 

~22 - a&-cl2 - olakl (laa) WI 

Substituting these expressions for-&, A(8 and. Rs mto the first group of Eqs. (1.1). we 
obtain the following equations for the rotation of the solid : 
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ao, 
‘1 dt = (Jl - Js) otO8 + macoIl - ma% (10s) (6.2) 

1 
J1 = wo, ml = - 

xh+Rl) 
c11- ad1 c11- anh 

(123) 

These equations are similar to the equations of motion of a balanced gyrostat [S]. 

The difference between the latter equations and those derived above consists in the fact 
that J,, J* and Je are positive in the case of the balanced gyrostat, while some of our 
J,, J,, and fs can be negative. 

Volterra,[13] showed that the general solution of Eqs. (6.2) can be expressed in terms 

of elliptic functions of time. Hence, by virtue of relations (2.2) and (6.1). the particular 
solutions of Eqs. (1.1) given in Sections 3 - 5 can also be expressed in terms of elliptic 
functions of time. 

Zhukovskii [6] provided a geometric interpretation of the motion of a balanced gyro- 
stat. Steklov [4] showed that a similar pattern of motion is exhibited by bodies the rota- 
tional portion of whose motion is described by Eqs. (6.2) in which some of the quantities 
J1, Js and Jg can be negative. 

7. Let us consider the case where there are no internal cyclical motions in the solid 

and where the solid moves in the fluid by inertia. We confine our attention to the fol- 

lowing expression for the double kinetic energy of the system : 

2T= 
z1 (a14'C h&2+ 2clPlR1) 

We introduce the expressions 
(Id) 

JI = PI + k,R, w) 

in which the constants kl, kr and ka are related to et, b, and c( (i = i,2,3) by relations 

(2.4). 
It is easy toi$ow that these expressions satisfy Eqs. 

-J+ =@I)- ar) JtJs + [es - ca + aa (ka - h) - asks] &Jz + 

+ [a - ~2 + a, (kl - b) + azkn] R2J2 023) 

Multiplying these equations by kokaJl, k8k,JI and klk2Ja , respectively, and adding 

them term by term, we obtain Eq. 

1 d 
T dt (knk$l” + kaklJa* + klkzJs*) = 

= [(as - 122) kzks + (a1 - as) k&l + (ar - al)k;kzl Jd2J2 + 

+ 2 ks {kr [~a - CP + 02 (kg-kl)-dab]+ kl [S - ~2 -I- 01 (ka - kd -I- ~aksl) RaJlJs 
mo 

which, on fulfillment of the conditions 

(a8 - aa) k&a + (al T aa) k&, + (aa - al) k&z = 6 (7.1) 

L (krfes - cs + 0s (ks - kr) - asks] + k, [cl - ca + a, (kn - ka) + aakal) = 0 (W 

yields the integral (7.2) 

bkaJ1’ i- bhlJta + klkaJa2 = const (7.3) 

Making use of relations (2.4). we can write conditions (7.2) in the form 

(Cl - ~2) (4 + ka - kd k2 = 0 (iti) (7.4) 

8. Let us satisfy conditions (7.4) by setting 
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or 

Cl = Ca = Cg = C (8.1) 

Relations (2.4) and (7.1) then yield relations (3.2) and (3.3). Integral (7.3) becomes 

2 (a+4 Pl+e 
[ 

I+ + w (0 + w 
v/a 

Rl 1 a = c”nst 
03.2) 

(123) 

T(ulPl~+ al&*+ USPS*+ ?ulnsR~l+za3a~Rll+ralalRsl)~ al( Rll+ I??? + XBl) + 

-I- 0 [ha i- paa -I- Paa + t (aa -I- as) Rla + r (as + Q) Raa -I- t (al + Q) Raa] + 

+ 2s V(~+tq) (a + ZUZ) (a + tan) ( PIRl + PaRa + P&) = const (3.3) 

Since u is arbitrary and does not enter into Eqs. (1.1). Eq. (8.3) implies that 

u,P,a + aalJaa + asPsa + TU~RJR~~ + zamRza + ravdlsz = cmst 

PIR1 + P2R4 + PsRR - const, RI1 + Ra’ + RS2 = ronal 
(3.4) 

pra + pal+ paa + r (aa + aa) ~~~ + t (aa + IQ) Rz2 + r (al + 4 Rs2 = r.onsl (8.5) 

Integrals (8.4) are the known Kirchhoff integrals of (1.2), and (8.5) is the fourth alge- 
braic first integral for the second integrable case of Clebsch 133. 

Thus, if the double kinetic energy of the system is given by 

2T = 2 [a#$ + 2cP1R1+ (b + tulu3) Rle] 

and if 
(123) 

Rl = ga = gs = 0, rl = ra = Q = 0 

then Eqs. (1.1) admit of integral (8.2). which immediately yields the “complete set” of 
the four first integrals(8.4),(8.5) required for reduction of the problem to quadratures. 
The second integrable case of Clebsch [3] has been obtained. 

9. In addition to conditions (8.1) let us also stipulate that 
Ul = Ul = Us = U 

Eqs. (2.4) then yield relations (4.2) and (4.3). Integral (7.3) can be written as 

(9.U 

Since e is arbitrary and does not appear in Eqs. (1. l), Eq. (9.1) implies that 

a (PI’ i- Pa’ i- J's'") - @a i- ba) RI’ - (bs + bl)R’a - (bt + h) Rsa = const 

PIRI -/- PzRa f PSRJ = const, RI1 + R21 $ Rag = const 

a (blPla f bzP3 + bsPsa) - bzbsRla - bSblRaa - b,bzRsa = const 

(9.2) 

(9.3) 

Integrals (9.2) are the Kirchhoff integrals of (1.2). and (9.3) is the fourth algebraic 
first integral for the third integrable case of Clebsch [3]. Thus, if 

2T = 2 (Apia + ZCPIRI + blR12), g1= $1 = gs = 0 

(123) 
rl = r2 = rs = 0 

then Eqs. (1.1) have first integral (9.1). which immediately yields the complete set of 
the four first integrals (9.2). (9.3) required for reduotion of the problem to quadratures. 
The third integrable case of Clebsch [3] has been obtained. 

Thus. we have shown in Sections 7 - 9 that the fourth algebraic first integrals in the 
second and third integrable cases of Clebsch can be expressed in the same form (7.3). 

In conclusion we note that the forms of integrals (8.2) and (9.1) “naturally” imply 
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two special cases of integrability characterized by systems of three linear particular 
solutions and conforming to the assumption that the arbitrary constants in the right sides 

of integrals (8.2) and (9.1) are equal to zero. The first of these cases of integrability 

was noted by Steklov ~121. 
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